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1 Introduction

The generation of a µ and Bµ term in the Higgs sector of the supersymmetric standard

model is one of the critical issues in low-energy supersymmetry. While the µ term alone is

responsible for Higgsino masses, both terms play a central role in realizing an appropriate

scalar potential in the Higgs sector, ensuring the spontaneous breaking of the electroweak

gauge symmetry. Since the µ term respects supersymmetry, one might also formulate the

µ/Bµ term problem by asking why this term, which would naturally be either very large

or exactly zero, happens to be of the same order of magnitude as the soft supersymmetry-

breaking Bµ term [1].

The two most popular solutions to this problem are provided by the Giudice-Masiero

mechanism [2] and the next-to-minimal supersymmetric standard model [3]. In the latter,

the scale of the µ term is set by the vacuum expectation value of the scalar component of an

extra uncharged chiral superfield. By contrast, in the former the µ term arises from a term

in the Kähler potential, which mimics a µ term in the superpotential after the non-zero

F term of the spurion superfield has absorbed part of the superspace integrations. Many

variants of these mechanisms as well as other approaches to the problem have since been

considered (see [4] for some recent examples).

In the present paper, we investigate 5-dimensional models with gauge-Higgs unifica-

tion [5], where the µ/Bµ term problem is solved naturally in a way which is very similar

to the Giudice-Masiero mechanism. Both these terms as well as the gaugino mass term

and some of the soft scalar masses are generated at the high scale in the interplay of the
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F term of the radion superfield and the chiral compensator of N = 1 supergravity with

the quadratic gauge theory lagrangian [6] (see also [7]). We point out that the resulting

high-scale relations are changed significantly by the 5d Chern-Simons term which, in par-

ticular, induces a non-trivial Higgs scalar potential even in the absence of an F term of the

chiral compensator.

At the more fundamental level, our motivation for this work is twofold: On the one

hand, orbifold-GUTs [8] are arguably the modern framework for grand unification. Within

this framework, gauge-Higgs unification receives a strong motivation from the requirement

of a large top Yukawa coupling. Furthermore, it is natural that both the radion superfield [9]

and (after radion stabilization) also the chiral compensator develop an F -term vacuum

expectation value. Thus, all ingredients for our mechanism are naturally present and

the required terms in the supersymmetric Higgs sector arise without any further model

building assumptions.

On the other hand, heterotic orbifold model building has recently produced some of the

most successful string-theoretic realizations of the supersymmetric standard model [10] (for

earlier related work see [11]). From this perspective, the existence of an intermediate energy

scale (one or two orders of magnitude below the string scale), at which the world appears to

be 5-dimensional, is also well-motivated [12]. It provides one of the few potential solutions

to the string-scale/GUT-scale problem. Furthermore, gauge-Higgs unification is again a

natural ingredient in all constructions where the Higgs fields come from the untwisted

sector, which is indeed the case in many concrete examples.

The presence of a µ term in 5d models with gauge-Higgs unification has been no-

ticed early on [13].1 The simultaneous generation of a Bµ term by the F -term vev of

the chiral compensator, leading to an interesting relation between µ term, Bµ term and

non-holomorphic soft Higgs masses, has been pointed out in [6]. This relation is main-

tained in the presence of a 5d Chern-Simons term, which however changes the relation

with the gaugino masses. As we already mentioned, the Chern-Simons term is crucial in

situations where the F term of the chiral compensator is small. Although such a term

is generically present in 5d supersymmetric gauge theories [14] (see also [15]), it affects

low-energy phenomenology only if some of the scalars of the 5d gauge multiplet develop

large vacuum expectation values [16]. This is, however, very well motivated in stringy

realizations of our scenario, where more than 5 dimensions are originally present. In most

cases, some of these extra compact dimensions support non-zero Wilson lines which can,

from a 5d perspective, play the role of the required scalar vacuum expectation value. In

such situations, the supersymmetric Chern-Simons term is parametrically as important for

low-energy phenomenology as the quadratic lagrangian.

We finally note that a detailed phenomenological analysis of the proposal advocated

in the present paper has subsequently appeared in [17]. In addition to demonstrating the

phenomenological viability of our setting, this work was essential for bringing an earlier,

partially incorrect version of this paper in its present form. We will comment on the earlier

proposal, its problems and their possible resolutions in more detail below.2

1 An alternative proposal in closely related string-theoretic models appears in the last paper of ref. [10].
2 We are indebted to Felix Brümmer for pointing out the problems of the original setting.
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Our paper is organized as follows: We begin in section 2 with the discussion of an

abelian toy model which shows, in a very direct and transparent way, how the quadratic

gauge theory lagrangian and the Chern-Simons term induce, in their interplay with the

radion superfield, terms that are structurally similar to the µ and Bµ term and soft super-

symmetry breaking masses for the ‘Higgs field’.

In section 3, we extend our analysis to the non-abelian case, providing in particular a

superfield expression for the non-abelian supersymmetric Chern-Simons term. The deriva-

tion of this term, which we consider to be a very interesting by-product of our investigation,

is described in more detail in the appendix. Applying our formulae to a U(6)= SU(6)×U(1)

model, where the possibility of gauge-Higgs unification is particularly apparent from the

decomposition 35 = 24 + 5 + 5̄ + 1 of the adjoint [13], we identify the terms involving the

two Higgs superfields, the radion and the chiral compensator.

We use our previous results to calculate, in section 4, µ and Bµ term, as well as soft

Higgs scalar masses and gaugino masses. As an interesting observation we note that, in the

absence of the Chern-Simons term and of an F term of the chiral compensator, µ term and

soft scalar masses conspire to ensure an exactly flat scalar potential in the Higgs sector.

However, once the radion is stabilized, a chiral compensator F term generically develops

and this flatness is lifted.

In section 5, we give the complete expressions for the µ term and the soft parame-

ters of the gauge-Higgs sector, including the effects of the Chern-Simons term and chiral

compensator. We then briefly discuss the viability of this high-scale input for low-energy

phenomenology after the renormalization group running down to the electroweak scale. We

also comment on the influence of the squark masses and trilinear terms on this running

and on the partially model-dependent high-scale origin of these terms (especially in the

top quark sector) in our 5d gauge-Higgs unification scenario.

Finally, we provide in section 6 an explicit phenomenologically viable construction

that has all the qualitative features which we used in our previous discussion. Our model

is closely related to a 5d model for gauge-Higgs unification by Burdman and Nomura [13].

We obtain our model by lifting this previous construction to 6 dimensions, where the

compact space has the topology of a pillow case, and taking a different 5d limit of this

geometry. In this way the non-zero 5d vev of the scalar component of the gauge multiplet

is automatically enforced. The rather intricate realization of matter fields and Yukawa

couplings can essentially be copied from the construction of Burdman and Nomura.

Our summary and conclusions are given in section 7.

2 The basic mechanism in an abelian toy model

The supersymmetric 5d U(1) gauge theory has a well-known description in terms of a 4d

real superfield V and a chiral superfield Φ = Σ + iA5 + · · · , both depending on the extra

parameter x5. Using this language, the quadratic 5d lagrangian reads [18, 19]

L2 =
1

4g2
5

[
∫

d2θ W 2 + h.c. +

∫

d4θ
(

2∂5V − (Φ + Φ̄)
)2

]

, (2.1)

– 3 –



J
H
E
P
0
8
(
2
0
0
9
)
0
6
4

where W is the supersymmetric field strength defined in terms of V . The supersymmetric

Chern-Simons term which will in general be present in this theory takes the form [19]3

Lcs = c

[
∫

d2θ Φ W 2 + h.c.

+
2

3

∫

d4θ (∂5V DαV − V Dα∂5V )W α + h.c.

− 1

6

∫

d4θ
(

2∂5V − (Φ + Φ̄)
)3

]

. (2.2)

We are interested in the 4d effective field theory obtained after S1 compactification

of the above model, in particular in the couplings to the radion superfield. The following

discussion can be viewed as a mild generalization of [20] (because of the Chern-Simons

term) or as a significantly simplified version of the derivation of related formulae in [21].

The relevant 4d lagrangian is found by simply dropping all terms involving x5 deriva-

tives, replacing V and Φ by their (x5-independent) zero modes, and integrating the result

over x5. In the rigid case, the latter amounts to a multiplication by L = 2πR. By contrast,

in the case where the original model is coupled to 5d supergravity, this multiplicative factor

has to be replaced by the radion superfield T (or T̄ ) in the holomorphic (antiholomorphic)

terms of eqs. (2.1) and (2.2) and by (T +T̄ )/2 in the d4θ terms. Here the 4d chiral superfield

T is normalized such that

T = L + iB5 , (2.3)

where BM (M = 0 . . . 3, 5) is the graviphoton of the 5d supergravity multiplet. Its pure-

derivative coupling in the component action enforces the use of the combination T + T̄ in

the d4θ terms in eqs. (2.1) and (2.2).

However, this is not the only way in which T enters the 4d effective theory. From the

fact that Φ contains the gauge field component A5, and A5 covariantizes the derivative

operator ∂/∂x5, it follows that the whole superfield has to scale as the inverse size of the

compact dimension. Thus, we have to perform the replacements

Φ → L0

T
Φ and Φ → 2L0

T + T̄
Φ (2.4)

in the d2θ and d4θ terms above. Here we have introduced an arbitrary constant L0 with

the dimension of length to insure that the new superfield Φ has the dimension of mass.

To summarize, the 4d low-energy lagrangian follows from eqs. (2.1) and (2.2) after

suppressing any x5 dependence, multiplying the appropriate terms by T , T̄ or (T + T̄ )/2,

and performing the redefinition of eq. (2.4). The results are

L2, 4d =
1

4g2
5

[
∫

d2θ T W 2 + h.c. + 2L2
0

∫

d4θ
(Φ + Φ̄)2

T + T̄

]

(2.5)

and

Lcs, 4d = c

[

L0

∫

d2θ Φ W 2 + h.c. +
4L3

0

6

∫

d4θ
(Φ + Φ̄)3

(T + T̄ )2

]

. (2.6)

3 Note that we find a different sign for the second term than is reported in [19].
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To check that the T dependence obtained in this intuitive approach is indeed correct, one

can work out the component form of the above superfield expressions and match it (with

appropriate field redefinitions and keeping track of all factors g55) to the 5d component

action [22].

Our main point concerning the generation of certain MSSM operators can now easily

be made. Recall that we want to think of V as containing the Standard model gauge

multiplet and of Φ as the Higgs superfield.4 If the radion auxiliary field FT develops a non-

zero expectation value, it is immediately clear that the superspace integrals in eq. (2.5)

induce operators

∼ FT W 2
∣

∣

∣

1
, ∼ |FT |2Φ2

∣

∣

∣

1
∼ F̄T Φ2

∣

∣

∣

θ2

, ∼ |FT |2ΦΦ̄
∣

∣

∣

1
and ∼ F̄T ΦΦ̄

∣

∣

∣

θ2

.

(2.7)

The first of them provides gaugino masses, which is often referred to as radion media-

tion [9]. The second, which clearly has the structure of the MSSM µ term, provides Higgsino

masses.5 Furthermore, both the second and the remaining operators in eq. (2.7) contribute

to the scalar potential, thereby apparently inducing a Bµ term and soft scalar masses in

the Higgs sector. However, a more careful analysis of eq. (2.5) reveals that all these con-

tributions exactly cancel and the scalar potential remains flat. (This fact, which can also

be understood from a structural perspective [23], remains true in the non-abelian case.)

To lift the flatness of the potential and to induce a non-zero Bµ term and soft scalar

masses in the present framework, the effect of the chiral compensator of N = 1 supergravity,

ϕ = 1+Fϕθ2, has to be taken into account. More specifically, a factor ϕϕ̄ has to be included

in the last term in eq. (2.5). If Fϕ develops a non-zero vacuum expectation value, operators

analogous to those displayed in eq. (2.7) (but with one or both of the factors FT and F̄T

replaced by Fϕ and F̄ϕ) are induced. The total scalar potential looses its flatness, which

can be described by a non-vanishing Bµ and soft scalar mass terms.

If the lowest component of Φ develops a vacuum expectation value, then the Chern-

Simons lagrangian of eq. (2.6) corrects the quadratic order lagrangian of eq. (2.5). More-

over, if c = O(1) and 〈Φ〉 ∼ 1/g2
5 (both of which are natural values, as will become clear

in the following), these contributions are not parametrically suppressed relative to those of

eq. (2.5). Thus, gaugino masses, µ and Bµ term, and the Higgs sector soft scalar masses

are induced on the basis of the fundamental lagrangian of eqs. (2.1) and (2.2) after coupling

it to supergravity and allowing for vacuum expectation values of Φ, FT and Fϕ. As we

will explain in more detail below, in higher-dimensional unified models an interesting and

realistic phenomenology can emerge on the basis of this very generic mechanism.

4 Of course, in this simple U(1) toy model Φ is not charged and the second Higgs multiplet is missing,

but that is irrelevant for now.
5 This can be understood from a slightly different perspective as follows: Non-vanishing FT is the 4d

manifestation of an SU(2)R symmetry twist in the 5d background. The latter induces gaugino masses

and, since the Higgsinos are 5d gauginos in the present setting, non-vanishing Higgsino masses are also

induced [13].

– 5 –
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3 Non-abelian generalization

The N = 1 superfield action of the 5d non-abelian gauge theory [18, 19] can be given in a

manifestly super-gauge-invariant form using the super-gauge-covariant x5 derivative [24]

∇5 = ∂5 + Φ . (3.1)

It reads

L2 =
1

2g2
5

tr

[
∫

d2θ W 2 + h.c. +

∫

d4θ
(

e−2V ∇5e
2V

)2
]

, (3.2)

where the action of Φ on e2V follows from the standard gauge transformation properties of

e2V , i.e.,

∇5e
2V = ∂5e

2V − Φ†e2V − e2V Φ . (3.3)

For the non-abelian supersymmetric Chern-Simons term we have, unfortunately, not been

able to derive an equally elegant superfield formula. However, sacrificing manifest super

gauge invariance by restricting ourselves to Wess-Zumino gauge, the following expression

can be derived [22] (see appendix):

Lcs = c tr

[
∫

d2θ Φ W 2 + h.c.

+
1

3

∫

d4θ ({∂5V,DαV } − {V,Dα∂5V }) W α + h.c.

− 1

12

∫

d4θ ({∂5V,DαV } − {V,Dα∂5V }) W α
(2)) + h.c.

− 1

6

∫

d4θ
(

e−2V ∇5e
2V

)3
]

. (3.4)

Here curly brackets are used for anticommutators and W α
(2) represents the part of W α

which is quadratic in V (recall that, in Wess-Zumino gauge, W is the sum of a linear and

quadratic piece in V ).

Starting from eqs. (3.2) and (3.4), which are the non-abelian generalizations of

eqs. (2.1) and (2.2), the coupling of the radion superfield to the zero modes of the compact-

ified theory can be derived in complete analogy to section 2. To recapitulate, one simply

has to suppress any x5 dependence, multiply the appropriate terms by T , T̄ or (T + T̄ )/2,

and perform a redefinition analogous to that of eq. (2.4). The results are

L2, 4d =
1

2g2
5

tr

[
∫

d2θ T W 2 + h.c. + 2L2
0

∫

d4θ
(Φ + Φ̄)2

T + T̄

]

(3.5)

and

Lcs, 4d = c tr

[

L0

∫

d2θ Φ W 2 + h.c. +
4L3

0

6

∫

d4θ
(Φ + Φ̄)3

(T + T̄ )2

]

. (3.6)

Clearly, this could have also been obtained by starting from eqs. (2.5) and (2.6), promoting

the superfields V and Φ to appropriate matrices and introducing the corresponding trace

operations. In this sense, our above discussion of the 5d superfield expression for the

non-abelian Chern-Simons term is included merely for completeness (and possible other

– 6 –
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applications). The phenomenology-oriented analysis following from now on is based entirely

on eqs. (3.5) and (3.6), which are straightforward generalizations of eqs. (2.5) and (2.6).

We can now be more specific about how we envisage the µ and Bµ term generation to

proceed in models of this type. To be concrete, let V and Φ take values in the Lie algebra

of the GUT gauge group U(6)= SU(6)×U(1). Furthermore, let the theory be compactified

to 4d on an interval such that SU(6) is broken to SU(5)×U(1)′ and the U(1) is completely

broken. In the corresponding decomposition of the adjoint representation,

35 = 24 + 5 + 5̄ + 1 , (3.7)

we find, as parts of the superfield Φ, the Higgs multiplets Hu and Hd in the 5 and 5̄ of

SU(5). The further breaking of SU(5) to the standard model gauge group, which could for

example also be realized by boundary conditions, is not important at the moment.

Thus, the second term of eq. (3.5) gives rise to the following contribution to the 4d

Higgs lagrangian:

L2, 4d ⊃ 1

g2
4

∫

d4θ
2L0ϕϕ̄

T + T̄
(Hu + H̄d)(Hd + H̄u) . (3.8)

Furthermore, if Φ develops a vev 〈Φ〉 = v 1, consistent with the assumed boundary-breaking

of the U(1)6, the second term of eq. (3.6) gives rise to the following correction to this

lagrangian (up to quadratic order):

Lcs ,4d ⊃ 2cL0v

∫

d4θ
(2L0)

2ϕϕ̄

(T + T̄ )2
(Hu + H̄d)(Hd + H̄u) . (3.9)

Here we have assumed that, with the exception of Hu and Hd, all the zero-mode components

of the chiral adjoint Φ have been eliminated by orbifolding (or acquired a large mass in

another way). Note also that, since we are not interested in the dynamics of T and ϕ at

6 In an earlier version of this paper, a Φ-vev ∼ diag(1, 1, 1, 1, 1,−5) inside the adjoint of SU(6) was

assumed. This is inconsistent with an orbifold breaking of SU(6) to SU(5)×U(1)′. The desired breaking by

boundary conditions can nevertheless be realized, e.g. by introducing a brane localized adjoint superfield and

giving it a large vev ∼ diag(1, 1, 1, 1, 1,−5). However, the bulk vev of Φ induces a bulk mass for the 5 and 5̄

Higgs fields. This is easy to see since the gauge symmetry is broken in the 5d bulk. Hence the ‘broken’ A5

components, which form some of the Higgs scalars, become massive in 5d. Equivalently, when thinking at

the zero-mode level of a corresponding S1 compactification, this mass term must be present since the 5 and

5̄ chiral multiplets become part of the massive vector multiplet. On an interval with boundary-breaking,

massless 4d fields in these representations nevertheless survive since only a certain linear combination of the

bulk and brane 5 and 5̄ fields is ‘eaten’ by the vector multiplets which become massive in the breaking of

SU(6) to SU(5)×U(1)′. However, these massless Higgs fields now have a non-trivial bulk profile because of

their bulk mass. This profile depends on the size of the Φ-vev and affects both the calculation of soft terms

and of Yukawa couplings, thereby significantly complicating the subsequent analysis. This set of problems

as well as its resolution by simply using U(6) instead of SU(6) was pointed out to us by Felix Brümmer

(see also [17]).

We also note that U(6) is, of course, a product gauge group allowing for independent coefficients of the

SU(6)- and U(1)-kinetic terms as well as of the CS terms of SU(6), U(1) and of the mixed CS terms (see

e.g. [25]). Since, given the above Φ-vev, only the mixed CS term is relevant for our analysis, we do not

complicate our notation by making all those independent coeffcients explicit.

– 7 –
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the moment, we have suppressed the constant term ∼ v3 in eq. (3.9). A term ∼ v2, which

would have to be linear in Hu and Hd, does obviously not arise for group theoretic reasons.

In a vacuum where T and ϕ develop non-zero F terms, eqs. (3.8) and (3.9) provide,

in addition to the kinetic terms for the Higgs multiplets, µ term, Bµ term and soft scalar

masses in the Higgs sector. The relevant operators are analogous to those given explicitly

in the case of our abelian toy model in eq. (2.7) of the previous section. In addition, the

first terms of both eq. (3.5) and (3.6) contribute to the standard model gauge kinetic term

and to the corresponding gaugino masses. We devote the following two sections to the

discussion of the resulting SUSY breaking pattern.

4 Calculating the µ and Bµ term and the Higgs-sector soft scalar masses

To begin, we ignore the possible Chern-Simons term and focus on the phenomenological

implications of eq. (3.8) and the first term of eq. (3.5). We assume the existence of a

(meta-)stable almost-Minkowski vacuum in which ReT = L0 and both FT and Fϕ have non-

zero values. Using the chiral compensator approach to supergravity, the scalar potential

in the Higgs sector (with canonical 4d field normalization) is easily obtained: We simply

have to integrate out the auxiliary-field vectors FHu
and FHd

on the basis of eq. (3.8) while

treating T , FT and Fϕ as fixed external sources. The result reads

L4, can. ⊃ −
(

|Fϕ|2 −
FϕF̄T + F̄ϕFT

T + T̄

)

(Hu + H̄d)(Hd + H̄u) . (4.1)

We emphasize that, in contrast to the last section, in this and the following equations Hu

and Hd are the scalar components of the corresponding superfields and their normalization

has been modified to make the 4d kinetic term canonical. The corresponding Higgsino

mass term can be directly read off from eq. (3.8):

L4, can. ⊃ −
(

F̄ϕ − F̄T

T + T̄

)

λuλd + h.c. (4.2)

where λu and λd are two-component Weyl spinors. This determines the value of the µ

parameter, which is conventionally defined as the coefficient of the Higgsino bilinear:

µ = F̄ϕ − F̄T

T + T̄
. (4.3)

Similarly to the gaugino mass

m1/2 =
F̄T

T + T̄
, (4.4)

a non-zero µ parameter arises as a consequence of FT , even if Fϕ vanishes.

Furthermore, if the Higgs scalar potential is parameterized by (see e.g. [26])

L4, can. ⊃ −(|µ|2+m2
Hu

)|Hu|2−(|µ|2+m2
Hd

)|Hd|2−(Bµ)HuHd+h.c.+quart. terms , (4.5)

we read off from eq. (4.1) that Bµ, mHu
and mHd

are given by (see also [6])

Bµ = |µ|2 + m2
Hu

= |µ|2 + m2
Hd

= |Fϕ|2 −
FϕF̄T + F̄ϕFT

T + T̄
. (4.6)
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In contrast to the µ parameter, these scalar mass parameters vanish if Fϕ = 0. This is

a result of the very specific generalized no-scale structure of the superfield expression in

eq. (3.5). In terms of the conventional parameterization of the component lagrangian with

soft terms, it implies a somewhat surprising exact cancellation between |µ|2 and m2
Hu

as

well as between |µ|2 and m2
Hd

in eq. (4.6). Clearly, the phenomenological implications of

the above formulae crucially depend on the values of FT and Fϕ (especially on their relative

size), on which we now briefly comment.

At the tree level, the compactification of 5d supergravity on S1/Z2 or S1/(Z2 × Z ′
2)

gives rise to a Kähler potential of no-scale type for the radion,

K0(T, T̄ ) = −3 ln(T + T̄ ) . (4.7)

An effective constant superpotential can be introduced if the boundary conditions at the

two ends of the interval preserve different N = 1 subalgebras of the original N = 2 SUSY.

(Alternatively, the same effect can arise as a result of some non-perturbative boundary ef-

fect, such as brane gaugino condensation.) In the resulting no-scale model, supersymmetry

is broken by FT , but T remains a flat direction. At the same time, Fϕ remains exactly zero.

For our purposes, this approximation (in the case that this is a reasonable approximation

to the physical vacuum) is insufficient since, as already mentioned in section 2, the Higgs

sector scalar potential remains exactly flat in this case.

Thus, we have to take the stabilization of the radion T seriously from the very beginning

and to determine FT and Fϕ in the context of a stabilized vacuum. It is well-known that

Fϕ is generically non-zero in such situations (implying, in our context, that a Higgs sector

scalar potential will be generated).

Starting from the no-scale situation described above, stabilization of T can arise

as a result of either Kähler corrections or T -dependent superpotential terms. To be as

generic as possible, we assume a model where, on the basis of a corrected Kähler potential

and superpotential,

K(T, T̄ ) = K0(T, T̄ ) + ∆K(T, T̄ ) and W (T ) , (4.8)

a (meta-)stable almost-Minkowski vacuum is produced (see e.g. [27, 28]). The equations

of motion for FT and Fϕ (and thus their vacuum values) can be obtained on the basis of

the flat-space superfield lagrangian

∫

d4θϕϕ̄Ω(T, T̄ ) +

∫

d2θϕ3W (T ) + h.c. , (4.9)

where Ω = −3 exp(−K/3) is the so-called ‘superspace kinetic energy’ [29].

For the purpose of this paper, we do not want to specify a stabilization mechanism

for T and extremize eq. (4.9) explicitly. Instead, we restrict ourselves to deriving a simple

relation between the F terms of the radion and the chiral compensator. This can be

achieved rather easily: First, assume that eq. (4.9) possesses a SUSY-breaking minimum

with vanishing cosmological constant. In this minimum, W takes some vacuum expectation

value W0. We now go to a different Kähler-Weyl frame, defined by the requirement that
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the superpotential W ′ in this frame is constant, W ′ = W0. Such a change of frames can

be viewed as a redefinition of the chiral compensator. The new chiral compensator ϕ′ is

defined in terms of T and ϕ by

W (T )ϕ3 = W ′ϕ′3 . (4.10)

In this new frame, Fϕ′ = 0, which is an immediate consequence of vanishing vacuum energy

and constant superpotential (see e.g. [30]). Thus,

ϕ = ϕ′ ·
(

W (T )

W0

)−1/3

= 1 ·
(

1 +
WT FT θ2

W0

)−1/3

. (4.11)

To lighten notation, we can now suppress the index ‘0’ of W and simply conclude that

Fϕ = −WT

3W
FT (4.12)

in the physical vacuum. This formula allows for a simple evaluation of the previously

derived supersymmetric and SUSY-breaking Higgs mass terms and their relation to gaugino

masses in any concrete model of radius stabilization. Note that, for a generic function

W (T ), we expect Fϕ ∼ FT /T on dimensional grounds. This relation is also found in the

specific model of [27]. The SUSY-breaking effects of Fϕ and FT are then parametrically

equally important.

5 Including the effect of the Chern-Simons term and some phenomeno-

logical consequences

We now repeat the analysis of the previous section on the basis of the complete lagrangian

of eqs. (3.8) and (3.9). Integrating out FHu
and FHd

, the following (canonically normalized)

scalar potential arises:

L4, can. ⊃ −
[

|Fϕ|2 −
(FϕF̄T + h.c.)

T + T̄

1 + 2c′

1 + c′
+

|FT |2
(T + T̄ )2

2c′2

(1 + c′)2

]

(Hu + H̄d)(Hd + H̄u) ,

(5.1)

where

c′ = 2cvg2
5 . (5.2)

Note that the no-scale argument ensuring the complete flatness of the scalar potential in

the absence of Fϕ has broken down. The reason is as follows: While the Chern-Simons

term by itself respects the generalized no-scale structure, the presence of a fixed vev v

breaks this structure. For this it is crucial that the vev is truly fixed in the sense that no

corresponding fluctuations are allowed - a situation which indeed arises in certain orbifold

models (see below).

Similarly, the Higgsino mass term, eq. (4.2), is now replaced by an analogous expression

following from eqs. (3.8) and (3.9):

L4, can. ⊃
(

F̄ϕ − F̄T

T + T̄

1 + 2c′

1 + c′

)

λuλd + h.c. (5.3)
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The gaugino mass is also affected by the Chern-Simons term. Although FΦ does not

develop a vacuum expectation value, the first term in eq. (3.6) affects the normalization of

the gauge kinetic term and hence the gaugino mass. Thus, we can summarize all effects

by giving the following set of SUSY-breaking parameters and the µ term:

m1/2 =
F̄T

T + T̄

1

1 + c′
, (5.4)

Bµ = |µ|2 + m2
Hu

= |µ|2 + m2
Hd

(5.5)

= |Fϕ|2 −
(FϕF̄T + h.c.)

T + T̄

1 + 2c′

1 + c′
+

|FT |2
(T + T̄ )2

2c′2

(1 + c′)2
,

µ = F̄ϕ − F̄T

T + T̄

1 + 2c′

1 + c′
. (5.6)

The most striking feature of this result is, as without the Chern-Simons term, the equality

between the Bµ term and the parameters |µ|2 + m2
Hu

and |µ|2 + m2
Hd

[6]. We now briefly

discuss the phenomenological consequences of this relation:

It is a well-known fact (see e.g. [26]) that electroweak symmetry breaking, i.e. the

destabilization of the vacuum with vanishing Higgs expectation values, requires

(Bµ)2 > (|µ|2 + m2
Hu

)(|µ|2 + m2
Hd

) . (5.7)

At the same time, positivity of the quadratic part of the scalar potential along the D-flat

directions is guaranteed if

2(Bµ) < (|µ|2 + m2
Hu

) + (|µ|2 + m2
Hd

) . (5.8)

For the parameters that we have found, both inequalities turn into equalities, apparently

disfavouring our scenario phenomenologically. However, our previous analysis was per-

formed at a high scale (the GUT scale or the orbifold-GUT compactification scale, which

is usually only marginally lower). Thus, our findings are, in fact, very encouraging since

even small running effects can easily turn the high-scale equalities into the desired inequal-

ities of eqs. (5.7) and (5.8).

We now discuss in more detail how this running modification of our high-scale relations

may occur. The crucial renormalization group equations are

16π2 d

dt
µ = µ

[

3|yt|2 − 3g2
2

]

, (5.9)

16π2 d

dt
(Bµ) = Bµ

[

3|yt|2 − 3g2
2

]

+ µ
[

6atȳt + 6g2
2M2

]

, (5.10)

16π2 d

dt
m2

Hu
= 6|yt|2

[

m2
Hu

+ m2
Q3

+ m2
u3

]

+ 6|at|2 − 6g2
2 |M2|2 , (5.11)

16π2 d

dt
m2

Hd
= −6g2

2 |M2|2 , (5.12)

where, except for writing Bµ instead of b, we follow the conventions of [26]. Since, for the

purposes of this paper, we are only interested in qualitative features, we have neglected
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all Yukawa couplings and trilinear couplings (except those of the top) as well as the U(1)

gauge coupling g1.

From the above equations we first immediately recognize the well-known fact that,

starting with m2
Hu

= m2
Hd

at a high scale, one generically finds m2
Hu

< m2
Hd

at the elec-

troweak scale, essentially because of the effects of the large top Yukawa coupling. We also

see from the formulae at the beginning of this section that both m2
Hu

and m2
Hd

can easily

be negative from the beginning in our setting.

Thus, (|µ|2 + m2
Hu

) < (|µ|2 + m2
Hd

) at the low scale and the inequalities of eqs. (5.7)

and (5.8) can, in principle, be satisfied simultaneously. Clearly, whether this actually

happens depends on the running of µ and Bµ and on their initial values. This depends, in

turn, on the fundamental parameters FT , Fϕ and c′ of our construction. Furthermore, the

running also depends on the soft masses and trilinear couplings in the top quark sector.

Since, as we will discuss in more detail in section 6, the matter fields originate in bulk

hypermultiplets, the relevant terms come from the superfields expressions [20]

Lhyp., 4d ⊃
∫

d4θϕϕ̄
1

2
(T + T̄ )

(

H†e−2V H + Hce2V Hc†
)

+

∫

d2θϕ3HcΦH + h.c. (5.13)

Unfortunately, as will again be explained in section 6 referring to the model of [13], realistic

Yukawa couplings require many such hypermultiplet terms with non-trivial bulk profiles

as well mixing with brane localized charged fields. Thus, we can not simply write down

the soft squark masses and trilinear couplings without entering more deeply in the matter

sector of our model.

Nevertheless, we see from the above that, using the freedom of choosing FT , Fϕ, c′

and of the bulk field localization and bulk-brane mixing in the matter sector, it is very

plausible that realistic low-scale SUSY-breaking parameters and µ term can result from our

fundamental high-scale formulae, eqs. (5.4)–(5.6). In situations without a Chern-Simons

term, a numerical analysis of the running of the relevant parameters has already been

performed in ref. [6], using certain plausible assumptions about soft parameters in the

top-quark sector. The authors came to the conclusion that, given the strong high-scale

constraints, correct electroweak symmetry breaking is difficult to achieve. They identified

the prediction m2
Hu, Hd

= −m2
1/2 as one of the main reasons for this difficulty. However, in

our model with a Chern-Simons term, precisely this constraint is lifted. In fact, as one can

see from eqs. (5.4)–(5.6), the parameters m2
1/2 and m2

Hu, Hd
blow up for different negative

values of c′, implying that any high-scale ratio of these quantities can, in principle, be

realized. Indeed, as has recently been demonstrated in [17], the inclusion of the Chern-

Simons term in this type of gauge-Higgs unification models allows for a realistic low-

energy phenomenology.

6 An explicit SU(6) orbifold-GUT model

Both the U(6) model analysed above as well as the more minimal pure SU(6) model briefly

discussed in a footnote in section 3, do not represent ‘clean’ versions of field-theoretic

orbifolding. Indeed, the U(1) factor in U(6) does not allow, in the presence of charged
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Figure 1. In two different 5d limits, the 6d model described in the text goes over into the model

of Burdman/Nomura or into ‘Our Model’.

matter, for a breaking by a Z2 symmetry of the original action. The pure SU(6) model,

on the other hand, inherently relies on the gauge symmetry breaking by (non-orbifold)

boundary conditions. Thus, it is interesting to see whether a 5d model can be found which

realizes all the essential features of our scenario by just modding out a set of Z2 symmetries.

In the present section, we provide a positive answer to this question, modifying the model

of [13] appropriately. However, this construction has problems of its own which are related

to precision gauge coupling unification (see below).

Although we are ultimately interested in 5d orbifold GUT models with gauge-Higgs

unification, the simplest way to approach our model is from a 6d perspective. We start

from 6d N = 2 super-Yang-Mills theory with gauge group SU(6) compactified on a torus

T 2. The torus is parameterized by a complex coordinate z with the fundamental domain

being defined by 0 ≤ Rez < 2πR6 and 0 ≤ Imz < 2πR5. We restrict the field space of

the model by requiring invariance under two orbifold projections P and P ′. With each

of these operations we associate SU(6) matrices which characterize the orbifold action

in gauge space and which we denote by the same symbol: P = idiag(1, 1, 1, 1, 1,−1)

and P ′ = diag(1, 1,−1,−1,−1,−1). The invariance requirements for the N = 1 vector

superfield V contained in the 6d gauge multiplet are

PV (z)P−1 = V (−z) and P ′V (z − π/2)P ′−1 = V (−(z − π/2)) . (6.1)

Similar relations, but with an extra minus sign, hold for the chiral superfield Φ, which

contains the remaining degrees of freedom of the 6d gauge multiplet.

The resulting theory can be visualized as a 6d model the compactification space of

which has the geometry of a pillow (cf. figure 1). This space has four conical singularities,

each with deficit angle π, two of which are due to the projection P and the other two

of which are due to the projection P ′. Correspondingly, the gauge symmetry is locally

restricted at these singularities to SU(5)×U(1) for P and to SU(4)×SU(2)×U(1) for P ′.

We now observe that by taking the limit R5 → 0, we arrive precisely at the 5d orbifold

GUT model with gauge-Higgs unification of Burdman and Nomura [13]. This limit is
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illustrated in figure 1. Indeed, in this limit the pillow degenerates to an interval and the

fixed points with gauge group SU(5)×U(1) (labelled by P ) merge into a boundary of the 5d

space with the same local gauge symmetry. Analogously, the two fixed points with gauge

group SU(4)×SU(2)×U(1) merge and play the role of the other boundary or brane.

We define our model by keeping R5 finite and taking the limit R6 → 0. This situation,

which is also visualized in the figure, corresponds again to a 5d model compactified on an

interval. However, the two boundaries are now equivalent and the gauge symmetry at the

boundary, which is restricted by both P and P ′, is the intersection of the two groups left

invariant by the two projections. It is just the gauge symmetry of the standard model plus

an extra U(1) factor (the U(1) left over when SU(6) is broken to SU(5)).

The model that we have thus obtained is similar but not identical to the 5d model of

section 3: The original gauge symmetry, which is SU(6) rather than U(6), is broken at each

boundary of the interval to GSM×U(1) rather than simply to SU(5)×U(1). In addition, the

vacuum expectation value of Φ takes a less symmetric form. To determine this vacuum

expectation value, we first recall that the scalar part of the chiral superfield Φ (which we

denote by the same symbol) reads Φ = A6 + iA5 in the 6d construction. Furthermore, if

a charged particle encircles the stretched pillow (labelled ‘Our model’ in figure 1) in the

short direction, it experiences a gauge rotation

P · P ′ = exp[i(π/4)T ] = exp

[

i

∫ πR6

0
A6dx6

]

. (6.2)

Here T = diag(1, 1,−1,−1,−1, 1) is the generator of the gauge twist P ·P ′ which is felt in

the bulk of our effective 5d space and which breaks SU(6) to SU(3)×SU(3)×U(1). Thus,

after dimensional reduction from 6d to 5d, we find 〈Φ〉 = v diag(1, 1,−1,−1,−1, 1) with

v = 1/(4R6).

This result may appear puzzling since it seems to imply that the physical effects of v,

introduced via the Chern-Simons term, become dominant in the 5d limit R6 → 0. However,

this is not the case for the following reason: The smallest R6 for which our 6d motivation of

the 5d model makes sense is R6 ∼ g6. For smaller R6, the 6d approach is compromised by

the fact that the strong-coupling scale of the 6d gauge theory lies below the compactification

scale. Through the relation 1/g2
5 ∼ R6/g

2
6 , this limiting situation gives rise to an effective

5d gauge-coupling g5 ∼
√

R6. We thus conclude from eq. (5.2) that the dimensionless

parameter c′ governing the size of the physical effects induced by v is indeed O(1) if the

coefficient of the Chern-Simons term in the original lagrangian is c ∼ O(1). Of course, the

6d supersymmetric gauge theory does not allow for a Chern-Simons term. However, the

5d theory obtained after S1-compactification includes such a term because of loop effects.

The group-theoretic structure of these loop induced Chern-Simons terms, which have been

discussed in some detail in section 5 of [16] (see also [14]), is somewhat different from that

of the tree-level 5d Chern-Simons term.7 However, the coefficient follows entirely from

group theory and matter content and is thus naturally O(1). We will not derive these

terms explicitly in the present 6d-motivated model but only reiterate that, as we claimed

7 Such structures are possible because the loop-induced prepotential does not have to be holomorphic

at the origin, Φ = 0. This allows for gauge invariant expressions different from tr Φ3.
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before, the physical effects of the Chern-Simons term in the presence of v do indeed arise

in more fundamental constructions and are, in general, comparable to the effects derived

from the quadratic lagrangian.

Let us finally turn to the problem of standard model matter fields and Yukawa cou-

plings in the presented gauge-Higgs unification model. This is, in principle, a highly non-

trivial issue since charged hypermultiplets have to be introduced in the bulk in such a way

that, after the orbifold projections, the correct low-energy spectrum results. Furthermore,

large 4d Yukawa couplings (in particular that of the top quark) can only result from bulk

gauge couplings because the two Higgs doublets come from the chiral superfield Φ in the

35, which is part of the gauge multiplet and can not have any other interactions in the 5d

(or 6d) bulk.

However, concerning all of these issues we can simply refer the reader to the 5d SU(6)

model of [13]. In this model, all of the above issues have been solved: For example, the

down- and up-type quarks are introduced as hypermultiplets in the 15 and 20 of SU(6) in

the bulk, which mix with extra 4d chiral superfields introduced on the branes. It has then

been shown that the top- and other Yukawa couplings can be correctly reproduced from

the 5d couplings with the gauge multiplet. A similar procedure works for the leptons. The

hierarchies of the Yukawa couplings can be realized by allowing for 5d bulk masses for the

hypermultiplets, which lead to exponential profiles of the fields and hence to very different

effective 4d couplings for the zero modes of the hypermultiplets.

Indeed, the whole construction of [13] can straightforwardly be lifted to 6 dimensions.

The field content in 5d and 6d is exactly the same. The orbifold S1/(Z2 × Z ′
2) can be

replaced by T 2/(Z2 × Z ′
2), as is visualized in figure 1. Instead of placing extra 4d chiral

superfields and 4d superpotentials on the boundaries of the 5d interval, those can equally

well be placed at the conical singularities of the 6d orbifold. In short, the whole construction

goes through without change. A critical issue appears to be the introduction of 5d bulk

masses for the hypermultiplets, which is not possible for charged hypermultiplets in 6

dimensions. However, the 6d hypermultiplets may be charged under extra U(1) gauge

groups. Wilson lines of these gauge groups (i.e. vacuum expectation values of A6) then

play the same role as 5d bulk masses and lead to localization effects for the zero modes.

To summarize, we could simply copy the relevant pages of [13], changing the language

from 5d to 6d. We will not do so since, in this paper, we do not intend to go beyond the

demonstration that the type of model underlying our discussion of SUSY breaking in the

Higgs sector does indeed arise in phenomenologically viable GUT models.

Although the 6d lift of the 5d model of [13] and its ‘opposite’ 5d limit appear to

be a very nice motivation of our 5d framework, this is not the only way to approach our

construction. Instead, we could simply say that our model is defined, from the start, on a 5d

interval with gauge group SU(6) in the bulk. At each boundary, the gauge group is broken

to GSM×U(1) (which is not a Z2 orbifold breaking) and a non-zero vacuum expectation value

for Σ is enforced by the boundary conditions. The inclusion of matter and the generation

of Yukawa couplings can be achieved in analogy to the similar 5d gauge-Higgs unification

model of [13]. From this perspective, our model remains 5-dimensional. The ‘pillow’ of

figure 1 and its 5d limit merely serve to convince the reader that non-orbifold 5d boundary
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conditions are natural, for example as the result of two merging conical singularities with

gauge breaking by P and P ′.

We finally note that, since the 5d vev used in this section does not preserve the

SU(5) subgroup, large threshold corrections to gauge-coupling unification will generically

be present [16]. This is not necessarily fatal since the size of these thresholds and the

way in which they affect the low-energy couplings is highly model dependent. However, it

would require a more detailed analysis to establish whether a fully realistic low-energy phe-

nomenology can emerge. Such an analysis is beyond the scope of the present investigation.

7 Conclusions

We have analysed supersymmetry breaking and the supersymmetric µ term in the Higgs

sector of 5-dimensional models with gauge-Higgs unification. This setting is well-motivated

both from the perspective of 5d or 6d orbifold GUTs, which are arguably the simplest

realistic grand unified theories on the market, as well as from the perspective of the most

successful heterotic string models.

Gaugino masses, soft Higgs masses, as well as the µ and Bµ term are generated in a

natural way once the F terms of the radion superfield and the chiral compensator acquire

non-zero vacuum expectation values. This happens in many of the simplest models where

the radion (the size of the 5th dimension) is stabilized with the help of a non-trivial su-

perpotential. The relative size of the SUSY-breaking parameters and the µ term depend

on ratio of the two F terms, Fϕ/FT . The overall scale is set by the ratio of the radion F

term and the size of the extra dimension, FT /T . This means that low-scale supersymme-

try is realized if the high-scale theory exhibits weak Scherk-Schwarz breaking (known as

radion mediation).

In addition to the effects based on the quadratic gauge theory lagrangian, the 5d

supersymmetric Chern-Simons term can play a crucial role. This is, in fact, expected since

the Chern-Simons term is an unavoidable part of generic 5d models compactified on an

interval. Its importance for the low-energy effective theory depends on the presence of a

large vacuum expectation value of the 5d scalar in the gauge multiplet. Such a vacuum

expectation value can be viewed as a Wilson line from the perspective an underlying 6d

or string model. Its size is then naturally of the right order of magnitude to compete with

the effects of the quadratic lagrangian.

If, as explained above, supersymmetry breaking is governed by both the quadratic

lagrangian and the Chern-Simons term, all relevant terms are generated just on the basis

of the F term of the chiral compensator. One can then consider the limit where the F

term of the chiral compensator vanishes, corresponding e.g. to the stabilization of the

radion purely by Kähler corrections.

The details of the resulting low-energy phenomenology are sensitive to the various

high-scale parameters, in particular Fϕ, FT and the vacuum expectation value of the 5d

scalar (the real part of the chiral adjoint). However, an interesting feature that appears to

be universal within the class of models that we have investigated is the high-scale relation

Bµ = |µ|2 + m2
Hu

= |µ|2 + m2
Hd

. This relation between Bµ term, µ term and soft Higgs
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masses is at the borderline of validity of the standard inequalities which have to be imposed

for successful electroweak symmetry breaking. Thus, we rely on running effects to lift the

equality m2
Hu

= m2
Hd

, which is standard, and on an appropriate running of µ and Bµ to

satisfy the necessary low-energy constraints. As demonstrated in [17], the Chern-Simons

term, which lifts certain extra constraints, is crucial to avoid the negative conclusions

concerning the low-energy phenomenology of related models reached in [6]. Thus, the

proposed version of supersymmetric gauge-Higgs unification with a 5d Chern-Simons term

defines an interesting new class of potentially realistic GUT models.
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A Superfield expression for the non-Abelian Chern-Simons term

This appendix is devoted to the construction of a superfield expression for the non-abelian

supersymmetric Chern-Simons term. Suppressing a possible overall prefactor, the super-

field expression for the abelian 5d Chern-Simons term is given by [19]

Lcs =

∫

d2θ Φ W 2 + h.c.

+
2

3

∫

d4θ (∂5V DαV − V Dα∂5V ) W α + h.c.

−1

6

∫

d4θ
(

2∂5V − (Φ + Φ̄)
)3

. (A.1)

The simple 4d procedure for the non-abelian generalization, i.e. the replacement V → e±2V ,

does not work in this case. Instead, we construct the non-abelian lagrangian by matching

an appropriate superfield expression (in Wess-Zumino gauge) to the component action.

Working within this approach is straightforward because the number of possible superfield

actions is highly restricted and the calculation can be performed in close analogy to the

abelian case.

Our starting point is the 5d Chern-Simons action of the (non-supersymmetric) non-

abelian gauge theory, which can be constructed from the 5d Chern-Simons form given

in [31]:

Lcs gauge = ǫMNOPQ tr

(

1

4
AMFNOFPQ − i

4
AMANAOFPQ − 1

10
AMANAOAP AQ

)

(A.2)

with the non-abelian field strength

FMN = ∂MAN − ∂NAM + i[AM , AN ] . (A.3)
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This expression must be reproduced by a superfield lagrangian which contains the fields

Φ, V,Wα with bosonic components

Φ = Σ(y) + iA5(y) + θ2FΦ(y)

VWZ = −θ σµθ̄Aµ(x) +
1

2
θ2θ̄2D(x) (A.4)

Wα = θαD(y) − i (σµν)α
βθβFµν(y) ,

where y = x + iθσθ̄. Note that the field strength superfield

Wα = −1

8
D̄2

(

e−2V Dαe2V
)

(A.5)

gives, in Wess-Zumino gauge, only terms linear and quadratic in V :

Wα = W (1)
α + W (2)

α (A.6)

with

W (1)
α = −1

4
D̄2DαV = θαD(y) − 2i (σµν)α

βθβ∂µAν(y)

W (2)
α = −1

4
D̄2[DαV, V ] = 2 (σµν)α

βθβAµ(y)Aν(y) , (A.7)

which reproduces the expression in eq. (A.4).

It is convenient to rewrite eq. (A.2) as

Lcs gauge = ǫµνρσ tr

(

3

4
A5FµνFρσ − 1

2
{Aµ, ∂5Aν}Fρσ +

i

4
{Aµ, ∂5Aν}AρAσ

)

, (A.8)

where the curly brackets denote anticommutators. It can be checked that the variation of

this expression under gauge transformations is a total derivative.

The first term in eq. (A.8) is obtained from a superfield lagrangian which is of the

same form as in the abelian case:

tr

(
∫

d2θ Φ W αWα + h.c.

)

. (A.9)

The second term is reproduced by a piece which is also similar to the abelian case:

tr

(
∫

d4θ ({∂5V,DαV } − {V, ∂5DαV }) W α + h.c.

)

. (A.10)

For the last term, it is necessary to use just the part of Wα quadratic in V :

tr

(
∫

d4θ ({∂5V,DαV } − {V, ∂5DαV }) W α
(2) + h.c.

)

. (A.11)

The above three terms already reproduce the non-supersymmetric 5d CS term of eq. (A.8),

but 5d Lorentz invariance is violated by a term ∼ ΣFµνFµν coming from eq. (A.9). This

– 18 –
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can be cured by adding a further contribution, which is a simple generalization of the last

term in the abelian CS action:

tr

∫

d4θ
(

e−2V ∇5 e2V
)3

. (A.12)

Here we have used the super gauge covariant derivative

∇5 ≡ ∂5 + Φ, (A.13)

acting on e2V as

∇5e
2V = ∂5e

2V − Φ†e2V − e2V Φ. (A.14)

The relative prefactors of the four contributions of eqs. (A.9)–(A.12) are fixed by an

explicit calculation and found to be consistent with those of the abelian action. Up to

an overall constant factor, the result is that of eq. (3.4). Although the evaluation of

this manifestly supersymmetric expression in WZ gauge reproduces the CS component

lagrangian of eq. (A.2), we were not able to show that it transforms into a total derivative

under super gauge transformations. Most probably this is due to missing extra terms that

vanish in WZ gauge. It would be interesting to construct these missing contributions and

achieve manifest super gauge invariance (as it is realized for the leading order lagrangian

in eq. (3.2)).

It requires a certain amount of work to extract even just the bosonic part of our full

superfield Chern-Simons lagrangian. One has to integrate by parts using the fact that Σ

vanishes at the boundaries. Furthermore, FΦ is set to zero by the equations of motion,

while D takes the value

D = −∂5Σ + i[Σ, A5] . (A.15)

The final result is

Lcs ⊃ c

[

2

3
Lcs gauge − tr

(

ΣFMNFMN + 2Σ(DMΣ) (DMΣ)
)

]

, (A.16)

where

DMΣ = ∂MΣ + i[AM ,Σ] . (A.17)

This also fixes the normalization of our superfield expression relative to the non-

supersymmetric Chern-Simons term.
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